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Variation among individuals in number of offspring (fitness, k) sets an upper limit to the evolutionary response to selection. This

constraint is quantified by Crow’s Opportunity for Selection (I), which is the variance in relative fitness (I = σ2
k/(uk)2). Crow’s I

has been widely used but remains controversial because it depends on mean offspring number in a sample (k̄). Here, I used a

generalized Wright-Fisher model that allows for unequal probabilities of producing offspring to evaluate behavior of Crow’s I and

related indices under a wide range of sampling scenarios. Analytical and numerical results are congruent and show that rescaling

the sample variance (s2k) to its expected value at a fixed k̄2 removes dependence of I on mean offspring number, but the result still

depends on choice of k̄2. A new index is introduced, �I = Î – E(Îdrift) = Î – 1/k̄, which makes Î independent of sample k̄ without the

need for variance rescaling. �I has a straightforward interpretation as the component of variance in relative fitness that exceeds

that expected under a null model of random reproductive success. �I can be used to directly compare estimates of the Opportunity

for Selection for samples from different studies, different sexes, and different life stages.

KEY WORDS: Genetic drift, genetic variation, life-history evolution, natural selection, population demography, population ge-

netics.

Over a half century ago, James Crow introduced two indices

that quantify variation in reproductive success among individu-

als, based on the mean (μk) and variance (σ2
k ) in the number of

offspring per individual (k). Crow and Morton (1955) defined the

ratio σ2
k/k as the Index of Variability, denoted here by ϕ. With

random reproductive success of N parents, the expected variance

in offspring number due to drift [E(σ2
k(dri f t ))] takes the form of

a binomial variance μk(N – 1)/N, which is often approximated

by the Poisson variance σ2
k= μk, leading to E(ϕdrift) ≈ 1. There-

fore, the Index of Variability is a useful indicator of the degree to

which variance in offspring number is overdispersed, relative to

the Poisson expectation, which in turn has a strong influence on

the effective population size (Ne) and the key ratio Ne/N. Shortly

thereafter, Crow (1958) defined the parameter I = σ2
k/μ

2
k = ϕ/μk,

which he called the Index of Total Selection, but subsequent

authors generally refer to this as the Opportunity for Selection

(Arnold and Wade 1984a,b; Clutton-Brock 1988; Brodie et al.

1995). Crow’s I measures “the total amount of selection possible,

given the demographics of a population. It answers the question,

By what fraction would the mean population fitness increase in

one generation of selection if its heritability were perfect (i.e.,

h2 = 1)?” (Crow 1989, p. 776). The Opportunity for Selection

thus sets an upper limit to the evolutionary response to selection;

mathematically, I also represents the variance in relative fitness

(Walsh and Lynch 2018).

Crow and Morton (1955) showed that the Index of Variabil-

ity is very sensitive to mean offspring number ( = mean fitness)

in a sample (k̄), and it is well known that Crow’s I also depends

on k̄. In a stable population of diploids, each parent contributes on

average half the genes to two adult offspring; therefore, assum-

ing exhaustive sampling of offspring, μk = 2. However, μk > 2

is possible for increasing populations, and k̄ > 2 can easily oc-

cur when sampling juvenile offspring of a highly fecund species

(e.g., a marine fish). Conversely, k̄ < 2 is possible for declining
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populations or when only a portion of the offspring are sampled.

Therefore, sampling from real populations in nature can produce

a wide range of sample k̄ values, even when the population is sta-

ble. Dependence of the estimators ϕ̂ and Î on k̄ means that, based

on experimental design and sampling effort, the same underlying

biological process could lead to very different conclusions about

the distribution of reproductive success and the Opportunity for

Selection. For this reason, a number of authors have questioned

the practical utility of Crow’s I for drawing inferences about nat-

ural selection (Trail 1985; Downhower et al. 1987; Fairbairn and

Wilby 2001).

This topic merits a new look, for two reasons. First, Crow

and Morton (1955) proposed a simple solution to the problem

caused by dependence of the Index of Variability on k̄: one can

rescale ϕ̂ to its expected value at a different mean offspring num-

ber using the following equation:

E (ϕ̂2) = 1 + k̄2

k̄1
(ϕ̂1 − 1) , (1)

where k̄1 is mean offspring number in the initial sample, k̄2 is

the target mean offspring number, ϕ̂1 is the initial estimate of the

Index of Variability, and ϕ̂2 is the rescaled index. Equation (1)

solves for the expected value of ϕ̂, assuming random mortality

of offspring until the target k̄ is reached. Allowing for random

mortality of individuals in a sample is statistically equivalent to

randomly sampling fewer offspring in the first place. Setting k̄2 =
2 yields the expected value of ϕ̂ for a constant population. Waples

(2002) showed that equation (1) also can be used for the common

situation where k̄1 < 2; in this case, the result is the value of ϕ̂

one would expect to find if the same offspring distribution were

sampled more intensively, until k̄2 = 2. There is nothing magical

about scaling to k̄2 = 2, but it is a useful reference point because

most populations that persist for any period of time must have a

long-term mean offspring number close to 2.

Because of the simple relationship between I and ϕ, Crow

and Morton’s method for rescaling ϕ can also be applied to I

to remove the dependence on the sample mean. However, few

published articles cite both Crow (1958) and Crow and Mor-

ton (1955). Crow himself did not mention the 1955 variance-

rescaling method in either his original 1958 article introducing

the Index of Total Selection or his 1989 retrospective. Others

(e.g., Wade and Arnold [1980] and Cabana and Kramer [1991])

noted Crow and Morton’s method but did not use it to rescale I

values. Therefore, it is important to evaluate the degree to which

rescaling raw I values can resolve ongoing controversies regard-

ing the Opportunity for Selection.

The second interesting issue is that, under random reproduc-

tive success, the Opportunity for Selection has a simple expecta-

tion: E(Îdrift) = E(ϕ̂)/k̄ ≈ 1/k̄. Downhower et al. (1987) suggested,

but did not recommend, that the difference between empirical Î

and 1/k̄ might be used to compare Î values from different stud-

ies. Their logic was that the result would still be a ratio, and ratios

have some undesirable statistical properties. As demonstrated be-

low, Downhower et al.’s idea has some real merit: Although both

empirical Î and E(Îdrift) depend on sample k̄, their difference does

not and hence is independent of mean fitness in the sample.

Here, analytical and numerical methods are used to explore

the relationship between Crow’s Index of Variability and the Op-

portunity for Selection. Objectives are to: (1) Illustrate the effects

of rescaling estimators ϕ̂ and Î to a constant k̄ = 2, under three

different reproductive systems: random reproductive success, and

moderate and strong reproductive skew. (2) Introduce a new in-

dex �I = Î – E(Îdrift) and show that this removes the dependence

of Î on mean offspring number, without any need for rescaling

to constant population size. �I represents the component of vari-

ance in relative fitness that exceeds that due to random demo-

graphic stochasticity. (3) Examine an index of relative resource

monopolization (Q) proposed by Ruzzante et al. (1996) for eval-

uating the Opportunity for Selection, but recast the index in terms

of I rather than the variance in offspring number. (4) Use raw and

scaled reproductive success data to calculate inbreeding and vari-

ance effective sizes and evaluate their sensitivity to the scaling

issues that affect ϕ.

Methods
See Table 1 for notation. Both of the “1s” in Crow and Morton’s

equation (1) are a consequence of using the Poisson approxima-

tion that E(ϕdrift) ≈ 1, rather than the exact E(ϕdrift) = (N – 1)/N.

The difference is generally negligible, but it can become impor-

tant when both N and mean offspring number are small. The an-

alytical treatment below follows Crow and Morton in using the

Poisson approximation. In rescaling empirical data, the follow-

ing adjustment to equation (1) can be used to incorporate the ex-

act variance:

E (ϕ̂2) = (N − 1) /N + k̄2

k̄1
(ϕ̂1 − (N − 1) /N ) . (1A)

ANALYTICAL MODEL

The model used here is a generalization of the standard Wright-

Fisher model of reproduction, whereby N monoecious adults

each contribute equally to a large (∼infinite) pool of gametes,

which unite at random to form the next generation. The current

model differs in two respects. First, separate sexes are allowed.

For simplicity, the treatment below assumes the sex ratio is equal;

if not, the only major difference is that mean offspring number

to produce a stable population will be <2 for the more numerous

sex and >2 for the less numerous sex. Second, and more impor-

tantly, the model allows for unequal contributions to the initial
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Table 1. Notation used in this document. In some instances, not all of the subscripts are used. Asterisks (∗) indicate terms that are both

population parameters and random variables whose expectations depend on a stochastic process of random sampling from the initial

gamete pool.

j An index for life stage (j = α, … ω), with α = initial gamete pool and ω = adult. In discussing the Crow and Morton
(1955) model, subscripts 1 and 2 are used rather than j to refer to two time periods for assessing the population.

Nj Number of individuals in the population at life stage j. Without a subscript, N refers to the number of parents.
nj Number of individuals sampled at life stage j
W A vector of individual weights (wi, i = 1,N) that determine proportional contributions of the N parents to the initial

gamete pool
ki Number of offspring produced by the ith parent
μkj Mean number of offspring per parent in the population at life stage j; because each offspring has two parents, μkj =

2Nj/N
k̄ j Mean number of offspring per parent in a sample taken from life stage j; k̄ j = 2nj/N
σ2

k j∗ Variance in number of offspring per parent in the population at life stage j
s2

k j Variance in number of offspring per parent in a sample taken from life stage j
ϕ j∗ Index of Variability = ratio σ2

k j∗/μkj in the population at life stage j
ϕ̂ j The ratio s2

k j /k̄ j in a sample taken at life stage j
Ij∗ Opportunity for Selection = ratio σ2

k j∗/(μkj)2 = ϕ j∗/μkj in the population at life stage j
Î j The ratio s2

k j /(k̄ j )2 = ϕ̂ j /k̄ j in a sample taken at life stage j
�I j∗ Ij∗ – E(Idrift,j) = Ij∗ –1/μk j = Crow’s I for the population, adjusted for drift at life stage j
�̂I j Î j – E(Îdriftj) = Î j – 1/k̄ j = Crow’s I for a sample, adjusted for drift at life stage j
Q̂I A sample estimate of Ruzzante’s Index of Resource Monopolization, modified to use I rather than variance in

offspring number
Ne Effective population size per generation
Nb Effective number of breeders per year or season

gamete pool, specified by the vector of individual weights W =
w1, w2, … wN (Fig. 1). A version of this weighted Wright-Fisher

model was first introduced by Robertson (1961) for the special

case of full-sibling families, but the more general treatment here

follows Felsenstein (2019). The number of gametes contributed

by the ith parent (ki) is proportional to its weight: kiα = Dwi,

where i = 1, … N, D is a (very) large constant, and the subscript

α indicates that the ki values apply to the initial gamete pool.

It follows that the mean number of gametes per parent in the

gamete pool is given by

μkα = Dw̄, (2)

and the variance of initial ki is

σ2
kα = Var (Dwi ) = D2σ2

w. (3)

After the gametes randomly combine to form zygotes, ran-

dom survival reduces the number of surviving offspring (Nj) at

successive life stages. The number of life stages to consider is

arbitrary; the schematic diagram in Figure 1 shows three stages

following the gamete pool (j = α, β, γ, ω), with j = ω denoting

the final (adult) stage. Mean offspring number per parent at the

various life stages is determined by the stage-specific population

sizes according to μkj = 2Nj/N. If sex ratio is equal and the num-

ber of surviving offspring at the final life stage is Nω = N, popula-

tion size is constant and μkω = 2, as in the original Wright-Fisher

model. Each stage-specific variance in offspring number per par-

ent (σ2∗
k j ) is not uniquely determined by the initial weights and Nj;

instead, it merely represents one of many possible random real-

izations of a stochastic process. In the notation, the asterisk (∗) is

used to denote the fact that (σ2∗
k j ) can be considered to be both a

population parameter (because it applies to all individuals in the

population at a given point in time) and a random variable (be-

cause it represents only one of many possible outcomes, given the

fixed composition of the initial gamete pool and the survival rate

through stage j). Waples and Faulkner (2009) also used the as-

terisk in a similar way in their evaluations of variation in realized

reproductive parameters under the standard Wright-Fisher model.

The Crow-Morton model envisions enumerating a popula-

tion at two time periods separated by random mortality, and it

can be related directly to this generalized Wright-Fisher model

as follows. Let time period 1 be the initial gamete pool (so time

1 = life stage α). From equations (2) and (3), we have μkα = μk1

= Dw̄ and σ2
kα= σ2

k1 = D2σ2
w, so the variance-to-mean ratio in the

gamete pool is

ϕα = ϕ1 = D2σ2
w/Dw̄ = Dσ2

w/w̄. (4)

We are now interested in predicting what the realized values

of σ2
k2∗, ϕ2∗, and I2∗ will be at a second (later) life stage, after

1944 EVOLUTION SEPTEMBER 2020



OPPORTUNITY FOR SELECTION REVISITED

Figure 1. Schematic representation of a generalized Wright-

Fisher model of reproduction that allows for unequal probabilities

of reproductive success. N adults contribute gametes in the pro-

portionsw1,w2, …wN to a very large (∼infinite) gamete pool (life

stage α), where gametes unite at random to produce zygotes. Sub-

sequently, random mortality (squiggly arrows) reduces the num-

ber of surviving offspring (Nj) at successive life stages (j = β, γ, ω)

and leads to smaller values of μkj = mean offspring number per

parent. If the number of surviving offspring at the final life stage

is Nω = N, population size is constant population and μkω = 2, as

in the original Wright-Fisher model. Each stage-specific variance

in offspring number per parent (σ2
k j∗) is a random variable, condi-

tional onμkj. Samples for empirical data analysis might be taken at

any life stage (stage β in this example). Mean offspring number in

the sample (k̄) is determined by the number of offspring sampled

(n) according to k̄ = 2n/N; the sample variance (s2k) is a random

variable conditional on the sample k̄ according to equation (12).

random mortality has reduced the offspring population size to

N2 and the mean offspring number to μk2 = 2N2/N. A simple

rearrangement of equation (1), using the notation above, leads to

(Waples 2002)

E
(
σ2

k2∗|μk2
) = μk2

[
1 + μk2

μk1
(ϕ1 − 1)

]
, (5)

with the “|” notation indicating that this is a conditional expec-

tation that depends on the value of μk2. Substituting for ϕ1 from

equation (4) produces

E
(
σ2

k2∗|μk2
) = μk2

[
1 + μk2

Dw̄

(
Dσ2

w

w̄
− 1

)]

= μk2

[
1 + μk2σ

2
w

w̄2
− μk2

Dw̄

]
. (6)

Because D is a very large constant, the last term can be ig-

nored, leading to

E
(
σ2

k2∗|μk2
) ≈ μk2

[
1 + μk2σ

2
w

w̄2

]
= μk2

[
1 + μk2CV 2 (w)

]
, (7)

where CV2(w) is the squared coefficient of variation of the in-

dividual weights. Finding the conditional expectation of ϕ2∗ is

straightforward:

E (ϕ2|μk2) = E
(
σ2

k2

)
/μk2 ≈ 1 + μk2CV 2 (w) . (8)

When the initial weights are equal, CV2(w) = 0 and we re-

cover the standard Wright-Fisher model with E (ϕdrift ) ≈ 1. Note

that this result is independent of the life stage or the stage-specific

μk, a property first demonstrated by Fisher (1939).

The analogous conditional expectation for the Opportunity

for Selection is

E (I2∗|μk2) ≈ E (ϕ2∗|μk2) /μk2 = CV 2 (w) + 1/μk2. (9)

Under a pure drift model, CV2(w) = 0 and equation (8) re-

duces to

E (Idrift2|μk2) = 1/μk2, (10)

which is the inverse of the mean offspring number per parent

(Downhower et al. 1987). Unlike E (ϕdrift ), therefore, E(Idrift) is

a conditional expectation that depends on the life stage at which

mean offspring number is calculated.

It is useful to define new metrics �ϕ and �I, obtained by

subtracting the random expectation from the raw value of the

index. Letting subscript 1 represent raw data and subscript 2

rescaled data, we have

�ϕ1 = ϕ1∗ − E(ϕdrift ) = ϕ1∗ − 1;

E (ϕ2∗) = 1 + μk2

μk1
(ϕ1∗ − 1) ;

�ϕ2 = ϕ2∗ − E (ϕdrift ) = μk2

μk1
(ϕ1∗ − 1) .

Thus, �ϕ1 and �ϕ2 differ by the factor μk2/μk1. �ϕ quanti-

fies the degree of overdispersion in σ2
k∗, but since the adjustment

only involves subtracting a constant, �ϕ still depends on mean

offspring number, regardless whether raw or scaled values are

used.

Results are different for the Opportunity for Selection:

I1∗ = ϕ1∗
μk1

;

�I1 = ϕ1∗
μk1

− 1

μk1
= 1

μk1
(ϕ1∗ − 1) ;

I2∗ = ϕ2∗
μk2

= 1

μk2
+ 1

μk1
(ϕ1∗ − 1) ;

�I2 = ϕ2∗
μk2

− 1

μk2
= 1

μk1
(ϕ1∗ − 1) .
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Therefore,

�I1 = �I2 = �I = 1

k̄1
(ϕ1∗ − 1) . (11)

After scaling ϕ1∗ to μk2 = 2, one obtains the following:

�I = ϕ2 − 1

2
. (11A)

Notably, the Opportunity for Selection, adjusted to account

for the contribution from random reproductive success, is the

same whether it is calculated for raw or rescaled values of I

(hence independent of mean offspring number or the life stage

at which reproductive success is quantified).

Thus far we have only dealt with population parameters, in-

cluding some that can be considered random variables with re-

spect to the initial gamete pool. Samples for empirical data anal-

ysis might be taken at any life stage; in the example in Figure 1,

it is stage β. Mean offspring number in a sample is uniquely de-

termined by the number of offspring sampled (n) according to

k̄ = 2n/N, but the sample variance (s2
k1) is a random realization

of a stochastic process that also depends on k̄. From a statisti-

cal standpoint, taking a random sample of n offspring from any

life stage subsequent to the initial gamete pool is mathematically

equivalent to finding a life stage at which random mortality has

reduced the population to Nj = n individuals and sampling all

of them. Therefore, for sampling in any life stage j, the expected

sample variance in offspring number, conditional on mean off-

spring number in the sample, is given by (modified from eq. 7):

E
(
s2

k j |k̄ j
) = k̄ j

[
1 + k̄ jCV 2 (w)

]
. (12)

Similarly, the conditional expected values of ϕ̂ and Î for ran-

dom samples are given by simple modifications of equations (8)

and (9):

E
(
ϕ̂ j |k̄ j

) = E
(
s2

k j |k̄ j
)
/k̄ j = 1 + k̄ jCV 2 (w) . (13)

E
(
Î j |k̄ j

) ≈ E
(
ϕ̂ j |k̄ j

)
/k̄ j = CV 2 (w) + 1/k̄ j . (14)

The hat “ˆ” is used for ϕ̂ and Î to indicate that they are esti-

mates based on samples (and are conditional on the sample mean

offspring number) and do not reflect population parameters.

Another way to scale indices of reproductive success is to

identify upper limits to possible values for σ2
k , ϕ, and I. Ruzzante

et al. (1996) provided the following expression for the maximum

possible variance in offspring number among N parents:

σ2
k(MAX ) = Nk̄2,

from which it is straightforward to derive the other maxima, as-

suming a sample of n offspring:

ϕ(MAX ) = Nk̄2/k̄ = Nk̄ = n; (15)

I(MAX ) = Nk̄/k̄ = N. (16)

Ruzzante et al. (1996) used σ2
k(MAX ) to define an index of

relative resource monopolization as

Q = σ2
k − k̄

σ2
k(MAX )−k̄

.

Q is the ratio of the empirical variance in offspring number to

the maximum possible variance, after both have been adjusted by

subtracting the expected value under Poisson variance in repro-

ductive success (k̄). In the current notation, Q = �σ2
k /�σ2

k(MAX ).

As a result of this standardization, Q is independent of mean re-

productive success. However, as noted by Fairbairn and Wilby

(2001), because Q is calculated using the variance in reproduc-

tive success rather than I, it is not readily interpretable in terms

of the Opportunity for Selection. A more useful index for this

purpose is

Q̂I = �̂I

IMAX − E
(
Îdri f t

) ≈ �̂I

N − 1/k̄
, (17)

which uses I directly.

Crow’s Index of Variability can also be used to calculate both

inbreeding and variance effective population size (Crow and Den-

niston 1988):

Inbreeding Ne = μkN − 1

μk − 1 + ϕ
; (18)

Variance Ne = μk (2N − 1)

2 (1 + ϕ)
. (19)

These equations give effective size for a single sex, and

equation (19) ignores the (generally minor) adjustment for de-

parture from Hardy-Weinberg genotypic proportions. If effective

size is calculated separately for males and females (Nem and Nef),

overall Ne can be obtained using Wright’s (1938) sex ratio adjust-

ment: Ne = 4NemNef/(Nem + Nef).

Felsenstein (2019) showed that in the weighted Wright-

Fisher model, variance Ne in a stable population (uk = 2) can

be expressed as a simple function of the initial weights:

Ne = N/
(
1 + CV 2

w

)
.

It can be shown that this result holds more generally for in-

breeding effective size assessed at any given life stage j. Ignoring

the “–1” term in the numerator, equation (18) becomes

Inbreeding Ne = μk jN

μk j − 1 + ϕ j
.
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From equation (8), we have E (ϕ j |μk j ) = 1 + μk jCV 2
w , and

making that substitution produces

Inbreeding Ne = μk jN

μk j + μk jCV 2
w

= N

1 + CV 2
w

. (20)

SIMULATIONS

The analytical results above demonstrate the conditional depen-

dence of ϕ and I on mean offspring number. To illustrate these

relationships for a wide range of sample k̄ values, and to evaluate

performance of the newly-proposed indices Q̂I and �̂I , a simu-

lation model was developed that mimics the weighted Wright-

Fisher model. For each of NOff offspring, a (nominally female)

parent was randomly chosen from the pool of N potential parents.

A total of NOff = 100N offspring were produced initially, and

random subsamples of different numbers of offspring (n) were

taken to produce a series of sample k̄1values; because only one

parent was chosen for each offspring, k̄1= n/N. Three reproduc-

tive scenarios were considered, defined by different vectors of

parental weights. (1) Each female was equally likely to be the

parent of every offspring (this is the Wright-Fisher model with

equal parental weights; W1 = 1, 1, … 1). (2) Moderate reproduc-

tive skew created by unequal weighting of parents (W2 = 1, 2, 3,

… N). (3) Stronger reproductive skew created by more unequal

parental weights (W3 = W2
2 = 1, 4, 9, … N2). Both for the raw

data and after scaling to constant population size, the statistics

k̄, s2
k , ϕ̂, and Î were calculated for each sample size for each of

1000 replicates, with 10-fold additional replication for k̄ < 1. Be-

cause the ratios ϕ̂ and Î are upwardly skewed, geometric means

across replicates were used as measures of central tendency. For

each sample size and resulting k̄, both effective sizes were esti-

mated using geometric means of s2
k and raw and scaled ϕ̂ from

the simulated reproductive success data.

Results
The analytical results in Methods showed how expected values

of the Index of Variability, the Opportunity for Selection, and

effective population size can be expressed as a simple function

of weighted parental contributions to an initial gamete pool. The

simulation model employed a comparable scheme for assigning

relative probabilities that different parents would produce off-

spring. Simulation results for a representative scenario with N

= 100 parents and NOff = 104 total offspring are illustrated in

Figures 2–4. Taking a series of random subsamples of offspring

(n = 10, … 5000) produced results for raw k̄1 spanning three

orders of magnitude (0.1–100).

CROW’S INDICES

Sensitivity of both raw ϕ̂1 and raw Î1 to sampling intensity is

apparent; the one exception is for ϕ under random reproductive

Figure 2. Dependence of Crow’s Index of Variability (ϕ) and Op-

portunity for Selection (I) on mean number of offspring per parent

in the sample (k̄). WithN parents and n offspring in the sample, k̄=
2n/N. Sample k̄ > 2 can occur in an increasing population or when

sampling early life stages; k̄ < 2 implies a declining population

or incomplete sampling of offspring. Shown are geometric mean

values of ϕ̂, Î, and �̂Ifor 10,000 simulated reproductive events, us-

ing either a Wright-Fisher random reproductive success model, or

moderate or strong overdispersion (unequal parental weights). A:

raw data, plotted as a function of mean offspring number in the

original sample (k̄1). B: raw data scaled to expected values at k̄2
= 2, using equation (1A). Rescaled values in panel B are essen-

tially the same values obtained by random subsampling the orig-

inal data to reach k̄1 = 2 (indicated by vertical line in panel A). �̂I

is the difference between the sample Î and the expected value of Î

under random reproductive success. The three �̂I values for strong

reproductive skew in the two panels (plotted at arbitrary values

of k̄1) are all of the same magnitude (�̂I = 0.8).
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Figure 3. The Q index of relative resource monopolization, mod-

ified from Ruzzante et al. (1996) as shown in equation (17). Q̂I is

the ratio of the empirical Î to the maximum possible Î, after both

have been adjusted by subtracting the expected value under ran-

dom reproductive success. Results are based on the simulated data

analyzed in Figure 2.

success, in which case ϕ̂1 ≈ 1 regardless what k̄1is (Fig. 2A). But

with overdispersed variance in reproductive success, ϕ̂1 increases

strongly with ̂̄k1 (raw ϕ̂1 > 80 for k̄1= 100 under strong repro-

ductive skew). Underdispersed variance in reproductive success

produces the mirror-image pattern: raw ϕ̂1 is very low (<<1)

when k̄1>> 2 and converges on 1 as k̄1 approaches 0 (Support-

ing Information 1 and Fig. S1). It is apparent from Figure S1 that

sparse sampling of offspring will generally have a poor chance of

detecting underdispersed variance in reproductive success, even

when underdispersion is pronounced.

For the scenarios depicted in Figure 2, stronger reproductive

skew produces larger values of Î1. Although ϕ̂1 increases with k̄1

when reproductive success is overdispersed, Î1 shows the oppo-

site pattern: the Opportunity for Selection is negatively correlated

with mean offspring number (Downhower et al. 1987; Cabana

and Kramer 1991).

Scaling raw ϕ̂1 and Î1 values to a fixed k̄2 = 2 removes the

dependence on mean offspring number for both indices (Fig. 2B).

In rescaling the empirical data for the simulation results, I used

the exact expectation for random variation in offspring number

(eq. 1A). Use of the Poisson approximation in Crow and Mor-

ton’s formula (eq. 1) produces a slight bias when k̄1< k̄2 (Sup-

porting Information 2; Fig. S2). The scaled values in Figure 2B,

obtained from the raw values in Figure 1A using equation (1), are

the same values identified in Figure 2A by the intersection of the

vertical line for k̄2 = 2 and the curves for the empirical data. That

is, subsampling from the original data to reach k̄2 = 2 produces

essentially the same result as scaling the raw data using the Crow

and Morton method. Note, however, that for both ϕ̂2 and Î2, the

magnitude of the rescaled values depends on choice of k̄2.

Independence of �̂I from both raw and scaled k̄ is also il-

lustrated in Figure 2. Although it is not visually apparent with

the log scaling of the Y axis, for strong reproductive skew the

two �̂I1 values for different k̄1in Figure 2A are the same (�̂I1

= 0.8), and both are equal to rescaled �̂I2 from Figure 2B

(�̂I2 = ϕ̂2−1
2 = 2.6−1

2 = 0.8 using eq. 11A).

INDEX OF RESOURCE MONOPOLIZATION

In the simulations, the estimator Q̂I = �̂I /(ÎMAX – 1/k̄1) (modified

from Ruzzante et al. 1996 according to eq. 17) was independent

of sample k̄1 under both random and overdispersed variance in

reproductive success (Fig. 3). Equations (15) and (16) show that

maximum possible ϕ̂ is just the number of offspring sampled (n),

whereas the maximum possible Î is the number of parents. These

results show that Q̂I could be useful in quantifying the effects

of resource monopolization in the context of the Opportunity for

Selection (Ruzzante et al. 1996; Fairbairn and Wilby 2001).

EFFECTIVE POPULATION SIZE

With random reproductive success, E(ϕ) ≈ 1 and inbreeding

Ne ≈ μkN/μk= N, regardless what μk is because inbreeding Ne

depends on the number of parents (Crow 1954; eq. 18). In con-

trast, for variance Ne, the μk term in the numerator is not bal-

anced by a separate μk term in the denominator (eq. 19), and as

a consequence variance Ne depends heavily on mean offspring

number in a sample (Fig. 4A). Harmonic mean inbreeding N̂e

is invariant with k̄1 for all reproductive scenarios, and the sam-

ple estimates agree almost exactly with the true Ne predicted by

equation (20) based on weighted contributions to the initial ga-

mete pool. In contrast, variance N̂e is directly proportional to k̄1

for random reproductive success and has a more complex but pos-

itive correlation with k̄1 when variance in reproductive success is

overdispersed. The two effective sizes are the same only when

k̄1 = 2 (vertical line in Fig. 4A), indicative of a stable population

(Crow 1954). Rescaling ϕ̂1 to its expectation for a population of

constant size removes the dependence of variance N̂e on mean

offspring number (Fig. 4B).

EFFECTS OF AGE STRUCTURE

All of the above analyses have implicitly assumed that gen-

erations are discrete. Because most species are age structured

(Hughes 2017), this is an important limitation. In age-structured

species having birth-pulse reproduction (Caswell 2001), there are

two major ways to calculate the mean and variance in reproduc-

tive success: (1) seasonal reproductive success among all mature

individuals during a single year or season; (2) lifetime reproduc-

tive success among all individuals from the same cohort. Below,

I consider some of the consequences of age structure for Crow’s

indices of reproductive success and related analyses.
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Figure 4. Dependence of variance N̂e (but not inbreeding N̂e) on mean offspring number in an initial sample (k̄1), for the three repro-

duction scenarios considered in Figure 2 with N = 100 parents. A: raw data; harmonic mean variance N̂e is positively correlated with

k̄1 for all reproductive scenarios, whereas harmonic mean inbreeding N̂e is independent of k̄1. Empirical data are depicted by symbols;

horizontal gray lines show true Ne (from eq. 20) for the three reproductive scenarios (Ne = 100 for random reproductive success, Ne =
75.2 for moderate reproductive skew, and Ne = 55.6 for strong reproductive skew). B: after scaling raw ϕ̂1 to constant population size

(k̄2= 2) using equation (1), variance N̂e produces essentially the same result as raw (unscaled) inbreeding N̂e. Rescaling to k̄ = 2 actually

produces identical values for variance and inbreeding N̂e; in Figure 4B, the rescaled variance N̂e is plotted against the raw inbreeding N̂e
to illustrate why it is not necessary to rescale sample ϕ̂1 when estimating inbreeding Ne.

Index of variability
Analysis of seasonal reproductive success conforms to the

discrete-generation model, with one exception: reproductive suc-

cess for all adults in a single season can be partitioned by parental

age. Seasonal reproduction within an age-structured population

can be described by vectors of age-specific mean reproductive

success and age-specific variance in reproductive success: k̄x and

s2
kx , where x indicates age. k̄x is an estimate of the familiar bx (or

mx) from a standard life table, published data for which are avail-

able for many species. s2
kx is the analogous age-specific sample

variance, but empirical estimates of this key parameter are sel-

dom published. The ratio of the age-specific variance and mean

is ϕ̂x (Waples et al. 2011; Waples 2016), which also is rarely re-

ported in the literature.
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As is the case with discrete generations, s2
kx and ϕ̂x are

sensitive to k̄x . These indices can be rescaled to a different

mean offspring number using equation (1), but there is a

complication: in age-structured species, it is not generally the

case that scaling to k̄x = 2 will produce results expected for

a stable population. Instead, s2
kx and ϕ̂x can be rescaled to

the vector of bx values that produce a stable population. This

requires that measures of relative, age-specific reproductive

success be converted to measures of absolute reproductive

success by ensuring that �lxbx = 2, where lx is cumulative

survival through age x. This in turn requires knowing or being

able to estimate age-specific survival rates. Table 2 in Waples

et al. (2018) shows how age-specific s2
kx and ϕ̂x values can

be rescaled to constant size in a species with overlapping

generations.

Effective size
Because of its insensitivity to mean offspring number, inbreed-

ing effective size is much more generally useful than is vari-

ance effective size when analyzing age-structured data. For these

species, equation (18) can be used to estimate the effective num-

ber of breeders per year or season (Nb) (Waples, 1990, 2016),

which generally differs from Ne per generation. For this purpose,

the age-specific vectors of k̄x and s2
kx values are converted into

scalars (k̄ and s2
k ) that reflect seasonal reproductive success for

adults of all ages. Estimating Ne per generation requires integra-

tion of reproductive success data across multiple years or sea-

sons to obtain the lifetime estimators k̄• and s2
k•; see Waples et al.

(2011) and Waples (2016) for details.

Opportunity for selection
Although the concept of age-specific Opportunity for Selection

is not particularly meaningful, Crow’s I can be (and often is) cal-

culated in two fundamentally different ways: (1) among all in-

dividuals reproducing in a single year or season, and (2) using

lifetime reproductive output among all individuals in a single co-

hort. For seasonal data, Î = s2
k /(k̄)2 and �̂I = Î – 1/k̄. As is the

case with discrete-generation data, �̂I for seasonal reproduction

is independent of mean offspring number in the sample, whether

raw or scaled data are used.

When applied to lifetime reproductive success data for mem-

bers of a cohort, Î• = s2
k•/(k̄•)

2 is appropriate when estimating the

Opportunity for Selection. Calculation of E(Î•drift) is complicated

by the necessity of considering random stochasticity in both sur-

vival and reproduction over individual lifetimes. In general, even

under a null model that assumes all individuals in a cohort expe-

rience the same age-specific probabilities of survival and repro-

duction, lifetime s2
k• will exceed k̄• because some individuals, by

chance, survive longer and have more opportunities to reproduce.

It does not appear that an analytical approximation is currently

available for lifetime E(Î•drift). However, under the null model, a

stochastic, absorbing Markov chain model with rewards devel-

oped by Caswell and colleagues (Caswell 2011; van Daalen and

Caswell 2017) could be used to calculate lifetime E(Î•drift) and

hence lifetime �̂I•, given information on age-specific vital rates

from a standard life table. A limitation of the Caswell model is

that it implicitly assumes that ϕx ≈ 1 for each age and sex. The

AgeNe model (Waples et al. 2011) is more general in this respect,

as it allows for age-specific and sex-specific values of ϕx, but has

the limitation that it is deterministic. Age-structured simulations

have shown, however, that AgeNe accurately predicts lifetime s2
k•

under conditions of random demographic stochasticity, as envi-

sioned by Caswell and colleagues (Waples et al. 2014). There-

fore, lifetime s2
k•, calculated in AgeNe after setting ϕx = 1 and

assuming lifetime k̄• = 2, could be used to estimate E(Î•drift) as

= s2
k•/(k̄•)

2 = s2
k•/4. From this, one could estimate lifetime �I as

�̂I• = Î• – s2
k•/4.

Discussion
The weighted Wright-Fisher model used here is a convenient way

to link the analytical and simulation models, which produced

congruent results. This model provides a way to express the In-

dex of Variability, the Opportunity for Selection, and effective

population size as simple functions of proportional contributions

by individual parents to an initial gamete pool. Major points to

emerge include the following:

(1) Rescaling Î to a fixed k̄2 (as Crow and Morton proposed for

the Index of Variability many decades ago) removes the de-

pendence of the Opportunity for Selection on mean offspring

number, but the result still depends on choice of k̄2. Although

an argument can be made that k̄2 = 2 is a logical refer-

ence point for standardizing offspring number, that is not the

only plausible target for variance rescaling. Furthermore, this

transformation raises the question whether rescaled Î can still

be interpreted as the variance in relative fitness.

(2) The new index �̂I introduced here solves this problem by si-

multaneously (1) removing the dependence of Î on mean fit-

ness in the sample, without the need for rescaling variance in

reproductive success, and (2) quantifying the degree to which

empirical Î exceeds the value expected under a null model of

random variation in reproductive success. This means that �I

can be used to compare empirical estimates of the Opportu-

nity for Selection from:

• different studies;

• different samples within the same study;

• samples of males and females when the sex ratio is uneven;

and
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• samples taken from different life stages.

The �̂I index also directly addresses the need for an ap-

propriate null model for the Opportunity for Selection, which

has been pointed out by numerous authors (e.g., McClain

1986; Downhower et al. 1987; Ruzzante et al. 1996). Al-

though the analytical and numerical methods used here mod-

eled diploids with separate sexes, the approach could easily

be extended to monoecious or haploid populations.

(3) The modified index QI is cast in terms of the Opportunity for

Selection; it is independent of mean offspring number and

might have some practical utility. However, conditions that

lead to IMAX, where one or a few parents produce all the off-

spring and the rest of the parents none, are quite extreme for

any stable population. This is the type of scenario proposed

by Hedgecock (1994) in his Sweepstakes Reproductive Suc-

cess hypothesis, which might apply to some marine fishes

with high fecundity and Type III survivorship (Hauser and

Carvalho 2008; Hedgecock and Pudovkin 2011). For most

species, however, scaling Q using IMAX will generally pro-

duce very low Q̂I values even when overdispersion is rela-

tively strong (Fig. 3).

(4) Simulation results confirm that equation (20) provides a

simple way to predict inbreeding effective size based on

individual weights that reflect relative probabilities that dif-

ferent individuals will be the parent of a random offspring.

With modern genomics technology and access to methods

that can noninvasively sample DNA from individuals in the

wild, parentage analyses are now routinely conducted for

natural populations of many plants and animals. Such data

are typically collected annually and later integrated across

years. Each set of annual reproductive success data can be

used to estimate the annual effective number of breeders, Nb,

and the ratio Nb/N. These demographic estimates can also be

compared with single-sample genetic estimates of inbreed-

ing Nb, which are now widely applied to natural populations

(Palstra and Fraser 2012; Whiteley et al. 2015; Wang 2016).

Because of its sensitivity to sample k̄, variance effective size

is not well-suited for these applications.

A case can be made that Crow’s I can be meaningfully ap-

plied to either seasonal or lifetime reproductive success data,

and examples of both are common in the literature. Quantifying

variance in lifetime reproductive success is clearly important, as

this parameter strongly influences Ne per generation and long-

term evolutionary behavior of the population. Calculation of �̂I•
based on lifetime reproductive success is complicated by hav-

ing to account for stochasticity in both survival and reproduction

propagated across the lifespan (Brommer et al. 2002), but the

stochastic “Markov chain with rewards” model of Caswell and

colleagues should be useful here. On the other hand, reproduc-

tion only occurs among individuals that co-occur in space and

time. Furthermore, sexual selection in terms of competition for

mates only occurs among individuals reproducing in the same

season. Seasonal/annual data on variance in reproductive success

and the estimators ϕ̂ and Î therefore can provide valuable insights

into mating systems and behavioral dynamics associated with

reproduction.

Although �I provides a simple way to standardize empiri-

cal estimates of Crow’s I, interpretation of the Opportunity for

Selection remains complicated. Even if �̂I is positive, it does

not prove that natural selection is operating—it only shows that

the distribution of reproductive success is more skewed than ex-

pected under random mating dynamics. As an alternative to ran-

dom survival, Crow and Morton (1955) considered an extreme

case of family-correlated mortality, in which entire families ei-

ther survive or do not as a unit. This type of result could occur

in two general ways. First, survival might reflect individual sur-

vival phenotypes of the offspring or nurturing phenotypes of the

parents. In this scenario, high mortality within a clutch of off-

spring could be due to failure of the offspring to grow quickly and

avoid predators, or failure of the parent to provide food or ward

off predators. To the extent that these phenotypes have a genetic

basis, this would reflect the operation of natural selection. This

can be called the “bad genes” explanation for family-correlated

mortality.

Under an alternative scenario, most or all offspring from a

family might fail to survive merely because, for a short period of

time, they share a common environment. This could occur, for ex-

ample, if the tree supporting a bird nest blows over in a storm, or

if all the eggs a female salmon lays in the gravel get washed away

during a flood. In these scenarios, survival or mortality might

have nothing to do with offspring phenotypes or genotypes; in-

stead, it could simply be a case of being in the wrong place at the

wrong time, together with your siblings. This can be called the

“bad luck” explanation. Parsing family-correlated survival into

“bad genes” versus “bad luck” hypotheses can be complicated

and is likely to be species and population specific (e.g., see Sny-

der and Ellner 2018). One needs to consider questions such as,

“When choosing nest sites, would some birds (those with better

genes) have avoided trees likely to suffer storm damage?” and

“Would a bigger, stronger female salmon have dug a nest deep

enough to withstand high flows, or located the nest in an area less

prone to scouring?” This and related issues are why most authors

refer to Crow’s I as the Opportunity for Selection; his original

term Index of Total Selection seems to imply a more direct link

to actual natural selection.

One potential caveat applies to use of �I. This index is most

useful when, as will often be the case, mean offspring num-

ber in a sample depends on logistical constraints or aspects of

experimental design such as sampling intensity or life stage
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sampled. In these situations, sample k̄ largely represents noise

in the analysis and its effects are best removed. However, mean

fitness in the population as a whole (uk) is a key parameter that

can reflect differential response to selection under different envi-

ronmental conditions (e.g., Cao et al. 2019). In cases where it is

possible to essentially inventory the entire population (such that

k̄ → uk), applying the �I adjustment could be counterproductive

by removing part of the signal.

SAMPLING CONSIDERATIONS

The above analyses have assumed random subsampling of all

offspring. Family-correlated sampling, in which siblings are col-

lected together more often than would occur by chance, can affect

the estimate of mean fitness and can have complex, cascading ef-

fects on ϕ̂ and Î . These sampling effects can be difficult to avoid

for highly fecund species when offspring are sampled at an early

life stage.

For adults, a key consideration is whether sampling proba-

bility is independent of (a) an individual’s reproductive success,

and (b) whether its offspring also have been sampled. If both cri-

teria are met, then randomly sampling just a portion of the adults

should not lead to bias, although it would increase uncertainty in

extrapolating from the sample to the population as a whole. Also,

performance of some genetic parentage programs can degrade if

the fraction of unsampled parents becomes too large (Jones et al.

2010), so incomplete sampling of potential parents could indi-

rectly affect performance of indices that estimate variance of re-

productive success.

Probably the most pervasive source of potential bias in sam-

pling adults involves those that produce no offspring. Under ran-

dom reproductive success, it is expected that some fraction of

mature adults will produce no offspring in a given year/season,

or even across their entire lifetime; with overdispersed variance

in reproductive success, the fraction of null parents will be higher.

In practical applications, it is essential to know whether these

null parents and those that actually produce offspring are equally

likely to be sampled. This equiprobable sampling criterion would

be violated, for example, if potential parents are only sampled

on the breeding grounds, but each year some fraction of adults

skip breeding. Failing to account for these null parents would

overestimate mean fitness and underestimate variance in repro-

ductive success and related quantities (Hadfield 2008; Klug et al.

2010; Waples and Antao 2014; van Daalen and Caswell in press).

Interestingly, failing to sample nonreproducers has no effect on

inbreeding N̂e; this type of sampling would affect all the pa-

rameters in equation (12), but they change in such a way that

N̂e and N̂b remain constant (Waples and Waples 2011). How-

ever, this scenario would affect the estimated Ne/N or Nb/N ra-

tios, if some fraction of mature adults are not accounted for in the

denominator.
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